آخرين پست هاي ارسالي انجمن ايران دلفي

تماشای رایگان فیلم ایرانی ، خارجی و کودک آکادمی دلفی
نمایش نتایج: از 1 به 6 از 6

موضوع: سوال.توابع و فرمول های محاسباتی و اماری

Hybrid View

  1. #1
    کاربر سایت mohpersia آواتار ها
    تاریخ عضویت
    July 2014
    نوشته ها
    5
    تشکر ها
    1
    تشکر شده 0 بار در 0 ارسال.

    Post سوال.توابع و فرمول های محاسباتی و اماری

    با سلام به دوستان.میخواستم بدونم چطور توابع و فرمول های محاسباتی آماری را در دلفی به کار بگیریم.مثلا اگر بخواهیم از فرمول آماری واریانس یا انحراف معیار استفاده کنیم یا بخواهیم از فرمول های احتمالات مانند ترکیب r شی از n شی استفاده کنیم.ممنون

  2. #2
    مدیرکل سایت admin آواتار ها
    تاریخ عضویت
    September 2008
    محل سکونت
    تهران ، آیسک
    سن
    39
    نوشته ها
    522
    تشکر ها
    247
    تشکر شده 250 بار در 160 ارسال.
    Blog Entries
    1

    پاسخ : سوال.توابع و فرمول های محاسباتی و اماری

    سلام.
    تابع Variance در خود دلفی موجود می باشد.
    نمونه کد زیر رو امتحان کنید.
    کد:
    var
    arrvar: Array of Double;
    begin
      SetLength(arrvar,2);
    arrvar[0] := 10;
    arrvar[1] := 10.5;
     ShowMessage(FloatToStr(Variance(arrvar)));
    دلفی ،*جذاب ترین زبان طراحی نرم افزار ...

  3. #3
    کاربر سایت mohpersia آواتار ها
    تاریخ عضویت
    July 2014
    نوشته ها
    5
    تشکر ها
    1
    تشکر شده 0 بار در 0 ارسال.

    پاسخ : سوال.توابع و فرمول های محاسباتی و اماری

    ممنونم.فقط به variance خطا میده.ایراد کجاست؟؟

  4. #4
    مدیرکل سایت admin آواتار ها
    تاریخ عضویت
    September 2008
    محل سکونت
    تهران ، آیسک
    سن
    39
    نوشته ها
    522
    تشکر ها
    247
    تشکر شده 250 بار در 160 ارسال.
    Blog Entries
    1

    پاسخ : سوال.توابع و فرمول های محاسباتی و اماری

    نقل قول نوشته اصلی توسط mohpersia نمایش پست ها
    ممنونم.فقط به variance خطا میده.ایراد کجاست؟؟
    شما باید از یونیت math استفاده کنید.
    کدتون رو تقریبا مشابه کد زیر وارد کنید ، در پروژه زیر من فقط یک فرم و یک Button دارم.
    کد:
    unit Unit1;
    
    interface
    
    uses
      Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
      Dialogs, StdCtrls;
    
    type
      TForm1 = class(TForm)
        Button1: TButton;
        procedure Button1Click(Sender: TObject);
      private
        { Private declarations }
      public
        { Public declarations }
      end;
    
    var
      Form1: TForm1;
    
    implementation
    
    uses Math;
    
    {$R *.dfm}
    
    procedure TForm1.Button1Click(Sender: TObject);
    var
    arrvar: Array of Double;
    begin
      SetLength(arrvar,2);
    arrvar[0] := 10;
    arrvar[1] := 10.5;
     ShowMessage(FloatToStr(Variance(arrvar)));
    
    end;
    
    end.
    ضمنا این یونیت Math هستش که در خود دلفی هست و نیازی نیست شما اون رو به پروژه اضافه کنید ، در زیر فقط جهت آشنایی با توابع موجود در این یونیت قرارش میدم
    کد:
    { *********************************************************************** }
    {                                                                         }
    { Delphi / Kylix Cross-Platform Runtime Library                           }
    {                                                                         }
    { Copyright (c) 1996, 2001 Borland Software Corporation                   }
    {                                                                         }
    { *********************************************************************** }
    
    unit Math;
    
    { This unit contains high-performance arithmetic, trigonometric, logarithmic,
      statistical, financial calculation and FPU routines which supplement the math
      routines that are part of the Delphi language or System unit.
    
      References:
      1) P.J. Plauger, "The Standard C Library", Prentice-Hall, 1992, Ch. 7.
      2) W.J. Cody, Jr., and W. Waite, "Software Manual For the Elementary
         Functions", Prentice-Hall, 1980.
      3) Namir Shammas, "C/C++ Mathematical Algorithms for Scientists and Engineers",
         McGraw-Hill, 1995, Ch 8.
      4) H.T. Lau, "A Numerical Library in C for Scientists and Engineers",
         CRC Press, 1994, Ch. 6.
      5) "Pentium(tm) Processor User's Manual, Volume 3: Architecture
         and Programming Manual", Intel, 1994
    
      Some of the functions, concepts or constants in this unit were provided by
      Earl F. Glynn (www.efg2.com) and Ray Lischner (www.tempest-sw.com)
    
      All angle parameters and results of trig functions are in radians.
    
      Most of the following trig and log routines map directly to Intel 80387 FPU
      floating point machine instructions.  Input domains, output ranges, and
      error handling are determined largely by the FPU hardware.
    
      Routines coded in assembler favor the Pentium FPU pipeline architecture.
    }
    
    {$N+,S-}
    
    interface
    
    uses SysUtils, Types;
    
    const   { Ranges of the IEEE floating point types, including denormals }
      MinSingle   =  1.5e-45;
      MaxSingle   =  3.4e+38;
      MinDouble   =  5.0e-324;
      MaxDouble   =  1.7e+308;
      MinExtended =  3.4e-4932;
      MaxExtended =  1.1e+4932;
      MinComp     = -9.223372036854775807e+18;
      MaxComp     =  9.223372036854775807e+18;
    
      { The following constants should not be used for comparison, only
        assignments. For comparison please use the IsNan and IsInfinity functions
        provided below. }
      NaN         =  0.0 / 0.0;
      (*$EXTERNALSYM NaN*)
      (*$HPPEMIT 'static const Extended NaN = 0.0 / 0.0;'*)
      Infinity    =  1.0 / 0.0;
      (*$EXTERNALSYM Infinity*)
      (*$HPPEMIT 'static const Extended Infinity = 1.0 / 0.0;'*)
      NegInfinity = -1.0 / 0.0;
      (*$EXTERNALSYM NegInfinity*)
      (*$HPPEMIT 'static const Extended NegInfinity = -1.0 / 0.0;'*)
    
    { Trigonometric functions }
    function ArcCos(const X: Extended): Extended;  { IN: |X| <= 1  OUT: [0..PI] radians }
    function ArcSin(const X: Extended): Extended;  { IN: |X| <= 1  OUT: [-PI/2..PI/2] radians }
    
    { ArcTan2 calculates ArcTan(Y/X), and returns an angle in the correct quadrant.
      IN: |Y| < 2^64, |X| < 2^64, X <> 0   OUT: [-PI..PI] radians }
    function ArcTan2(const Y, X: Extended): Extended;
    
    { SinCos is 2x faster than calling Sin and Cos separately for the same angle }
    procedure SinCos(const Theta: Extended; var Sin, Cos: Extended) register;
    function Tan(const X: Extended): Extended;
    function Cotan(const X: Extended): Extended;           { 1 / tan(X), X <> 0 }
    function Secant(const X: Extended): Extended;          { 1 / cos(X) }
    function Cosecant(const X: Extended): Extended;        { 1 / sin(X) }
    function Hypot(const X, Y: Extended): Extended;        { Sqrt(X**2 + Y**2) }
    
    { Angle unit conversion routines }
    function RadToDeg(const Radians: Extended): Extended;  { Degrees := Radians * 180 / PI }
    function RadToGrad(const Radians: Extended): Extended; { Grads := Radians * 200 / PI }
    function RadToCycle(const Radians: Extended): Extended;{ Cycles := Radians / 2PI }
    
    function DegToRad(const Degrees: Extended): Extended;  { Radians := Degrees * PI / 180}
    function DegToGrad(const Degrees: Extended): Extended;
    function DegToCycle(const Degrees: Extended): Extended;
    
    function GradToRad(const Grads: Extended): Extended;   { Radians := Grads * PI / 200 }
    function GradToDeg(const Grads: Extended): Extended;
    function GradToCycle(const Grads: Extended): Extended;
    
    function CycleToRad(const Cycles: Extended): Extended; { Radians := Cycles * 2PI }
    function CycleToDeg(const Cycles: Extended): Extended;
    function CycleToGrad(const Cycles: Extended): Extended;
    
    { Hyperbolic functions and inverses }
    function Cot(const X: Extended): Extended;             { alias for Cotan }
    function Sec(const X: Extended): Extended;             { alias for Secant }
    function Csc(const X: Extended): Extended;             { alias for Cosecant }
    function Cosh(const X: Extended): Extended;
    function Sinh(const X: Extended): Extended;
    function Tanh(const X: Extended): Extended;
    function CotH(const X: Extended): Extended;
    function SecH(const X: Extended): Extended;
    function CscH(const X: Extended): Extended;
    function ArcCot(const X: Extended): Extended;          { IN: X <> 0 }
    function ArcSec(const X: Extended): Extended;          { IN: X <> 0 }
    function ArcCsc(const X: Extended): Extended;          { IN: X <> 0 }
    function ArcCosh(const X: Extended): Extended;         { IN: X >= 1 }
    function ArcSinh(const X: Extended): Extended;
    function ArcTanh(const X: Extended): Extended;         { IN: |X| <= 1 }
    function ArcCotH(const X: Extended): Extended;         { IN: X <> 0 }
    function ArcSecH(const X: Extended): Extended;         { IN: X <> 0 }
    function ArcCscH(const X: Extended): Extended;         { IN: X <> 0 }
    
    { Logarithmic functions }
    function LnXP1(const X: Extended): Extended; { Ln(X + 1), accurate for X near zero }
    function Log10(const X: Extended): Extended;                    { Log base 10 of X }
    function Log2(const X: Extended): Extended;                      { Log base 2 of X }
    function LogN(const Base, X: Extended): Extended;                { Log base N of X }
    
    { Exponential functions }
    
    { IntPower: Raise base to an integral power.  Fast. }
    function IntPower(const Base: Extended; const Exponent: Integer): Extended register;
    
    { Power: Raise base to any power.
      For fractional exponents, or |exponents| > MaxInt, base must be > 0. }
    function Power(const Base, Exponent: Extended): Extended;
    
    { Miscellaneous Routines }
    
    { Frexp:  Separates the mantissa and exponent of X. }
    procedure Frexp(const X: Extended; var Mantissa: Extended; var Exponent: Integer) register;
    
    { Ldexp: returns X*2**P }
    function Ldexp(const X: Extended; const P: Integer): Extended register;
    
    { Ceil: Smallest integer >= X, |X| < MaxInt }
    function Ceil(const X: Extended):Integer;
    
    { Floor: Largest integer <= X,  |X| < MaxInt }
    function Floor(const X: Extended): Integer;
    
    { Poly: Evaluates a uniform polynomial of one variable at value X.
        The coefficients are ordered in increasing powers of X:
        Coefficients[0] + Coefficients[1]*X + ... + Coefficients[N]*(X**N) }
    function Poly(const X: Extended; const Coefficients: array of Double): Extended;
    
    {-----------------------------------------------------------------------
    Statistical functions.
    
    Common commercial spreadsheet macro names for these statistical and
    financial functions are given in the comments preceding each function.
    -----------------------------------------------------------------------}
    
    { Mean:  Arithmetic average of values.  (AVG):  SUM / N }
    function Mean(const Data: array of Double): Extended;
    
    { Sum: Sum of values.  (SUM) }
    function Sum(const Data: array of Double): Extended register;
    function SumInt(const Data: array of Integer): Integer register;
    function SumOfSquares(const Data: array of Double): Extended;
    procedure SumsAndSquares(const Data: array of Double;
      var Sum, SumOfSquares: Extended) register;
    
    { MinValue: Returns the smallest signed value in the data array (MIN) }
    function MinValue(const Data: array of Double): Double;
    function MinIntValue(const Data: array of Integer): Integer;
    
    function Min(const A, B: Integer): Integer; overload;
    function Min(const A, B: Int64): Int64; overload;
    function Min(const A, B: Single): Single; overload;
    function Min(const A, B: Double): Double; overload;
    function Min(const A, B: Extended): Extended; overload;
    
    { MaxValue: Returns the largest signed value in the data array (MAX) }
    function MaxValue(const Data: array of Double): Double;
    function MaxIntValue(const Data: array of Integer): Integer;
    
    function Max(const A, B: Integer): Integer; overload;
    function Max(const A, B: Int64): Int64; overload;
    function Max(const A, B: Single): Single; overload;
    function Max(const A, B: Double): Double; overload;
    function Max(const A, B: Extended): Extended; overload;
    
    { Standard Deviation (STD): Sqrt(Variance). aka Sample Standard Deviation }
    function StdDev(const Data: array of Double): Extended;
    
    { MeanAndStdDev calculates Mean and StdDev in one call. }
    procedure MeanAndStdDev(const Data: array of Double; var Mean, StdDev: Extended);
    
    { Population Standard Deviation (STDP): Sqrt(PopnVariance).
      Used in some business and financial calculations. }
    function PopnStdDev(const Data: array of Double): Extended;
    
    { Variance (VARS): TotalVariance / (N-1). aka Sample Variance }
    function Variance(const Data: array of Double): Extended;
    
    { Population Variance (VAR or VARP): TotalVariance/ N }
    function PopnVariance(const Data: array of Double): Extended;
    
    { Total Variance: SUM(i=1,N)[(X(i) - Mean)**2] }
    function TotalVariance(const Data: array of Double): Extended;
    
    { Norm:  The Euclidean L2-norm.  Sqrt(SumOfSquares) }
    function Norm(const Data: array of Double): Extended;
    
    { MomentSkewKurtosis: Calculates the core factors of statistical analysis:
      the first four moments plus the coefficients of skewness and kurtosis.
      M1 is the Mean.  M2 is the Variance.
      Skew reflects symmetry of distribution: M3 / (M2**(3/2))
      Kurtosis reflects flatness of distribution: M4 / Sqr(M2) }
    procedure MomentSkewKurtosis(const Data: array of Double;
      var M1, M2, M3, M4, Skew, Kurtosis: Extended);
    
    { RandG produces random numbers with Gaussian distribution about the mean.
      Useful for simulating data with sampling errors. }
    function RandG(Mean, StdDev: Extended): Extended;
    
    {-----------------------------------------------------------------------
    General/Misc use functions
    -----------------------------------------------------------------------}
    
    { Extreme testing }
    
    // Like an infinity, a NaN double value has an exponent of 7FF, but the NaN
    // values have a fraction field that is not 0.
    function IsNan(const AValue: Double): Boolean; overload;
    function IsNan(const AValue: Single): Boolean; overload;
    function IsNan(const AValue: Extended): Boolean; overload;
    
    // Like a NaN, an infinity double value has an exponent of 7FF, but the
    // infinity values have a fraction field of 0. Infinity values can be positive
    // or negative, which is specified in the high-order, sign bit.
    function IsInfinite(const AValue: Double): Boolean;
    
    { Simple sign testing }
    
    type
      TValueSign = -1..1;
    
    const
      NegativeValue = Low(TValueSign);
      ZeroValue = 0;
      PositiveValue = High(TValueSign);
    
    function Sign(const AValue: Integer): TValueSign; overload;
    function Sign(const AValue: Int64): TValueSign; overload;
    function Sign(const AValue: Double): TValueSign; overload;
    
    { CompareFloat & SameFloat: If epsilon is not given (or is zero) we will
      attempt to compute a reasonable one based on the precision of the floating
      point type used. }
    
    function CompareValue(const A, B: Extended; Epsilon: Extended = 0): TValueRelationship; overload;
    function CompareValue(const A, B: Double; Epsilon: Double = 0): TValueRelationship; overload;
    function CompareValue(const A, B: Single; Epsilon: Single = 0): TValueRelationship; overload;
    function CompareValue(const A, B: Integer): TValueRelationship; overload;
    function CompareValue(const A, B: Int64): TValueRelationship; overload;
    
    function SameValue(const A, B: Extended; Epsilon: Extended = 0): Boolean; overload;
    function SameValue(const A, B: Double; Epsilon: Double = 0): Boolean; overload;
    function SameValue(const A, B: Single; Epsilon: Single = 0): Boolean; overload;
    
    { IsZero: These will return true if the given value is zero (or very very very
      close to it). }
    
    function IsZero(const A: Extended; Epsilon: Extended = 0): Boolean; overload;
    function IsZero(const A: Double; Epsilon: Double = 0): Boolean; overload;
    function IsZero(const A: Single; Epsilon: Single = 0): Boolean; overload;
    
    { Easy to use conditional functions }
    
    function IfThen(AValue: Boolean; const ATrue: Integer; const AFalse: Integer = 0): Integer; overload;
    function IfThen(AValue: Boolean; const ATrue: Int64; const AFalse: Int64 = 0): Int64; overload;
    function IfThen(AValue: Boolean; const ATrue: Double; const AFalse: Double = 0.0): Double; overload;
    
    { Various random functions }
    
    function RandomRange(const AFrom, ATo: Integer): Integer;
    function RandomFrom(const AValues: array of Integer): Integer; overload;
    function RandomFrom(const AValues: array of Int64): Int64; overload;
    function RandomFrom(const AValues: array of Double): Double; overload;
    
    { Range testing functions }
    
    function InRange(const AValue, AMin, AMax: Integer): Boolean; overload;
    function InRange(const AValue, AMin, AMax: Int64): Boolean; overload;
    function InRange(const AValue, AMin, AMax: Double): Boolean; overload;
    
    { Range truncation functions }
    
    function EnsureRange(const AValue, AMin, AMax: Integer): Integer; overload;
    function EnsureRange(const AValue, AMin, AMax: Int64): Int64; overload;
    function EnsureRange(const AValue, AMin, AMax: Double): Double; overload;
    
    { 16 bit integer division and remainder in one operation }
    
    procedure DivMod(Dividend: Integer; Divisor: Word;
      var Result, Remainder: Word);
    
    
    { Round to a specific digit or power of ten }
    { ADigit has a valid range of 37 to -37.  Here are some valid examples
      of ADigit values...
       3 = 10^3  = 1000   = thousand's place
       2 = 10^2  =  100   = hundred's place
       1 = 10^1  =   10   = ten's place
      -1 = 10^-1 = 1/10   = tenth's place
      -2 = 10^-2 = 1/100  = hundredth's place
      -3 = 10^-3 = 1/1000 = thousandth's place }
    
    type
      TRoundToRange = -37..37;
    
    function RoundTo(const AValue: Double; const ADigit: TRoundToRange): Double;
    
    { This variation of the RoundTo function follows the asymmetric arithmetic
      rounding algorithm (if Frac(X) < .5 then return X else return X + 1).  This
      function defaults to rounding to the hundredth's place (cents). }
    
    function SimpleRoundTo(const AValue: Double; const ADigit: TRoundToRange = -2): Double;
    
    {-----------------------------------------------------------------------
    Financial functions.  Standard set from Quattro Pro.
    
    Parameter conventions:
    
    From the point of view of A, amounts received by A are positive and
    amounts disbursed by A are negative (e.g. a borrower's loan repayments
    are regarded by the borrower as negative).
    
    Interest rates are per payment period.  11% annual percentage rate on a
    loan with 12 payments per year would be (11 / 100) / 12 = 0.00916667
    
    -----------------------------------------------------------------------}
    
    type
      TPaymentTime = (ptEndOfPeriod, ptStartOfPeriod);
    
    { Double Declining Balance (DDB) }
    function DoubleDecliningBalance(const Cost, Salvage: Extended;
      Life, Period: Integer): Extended;
    
    { Future Value (FVAL) }
    function FutureValue(const Rate: Extended; NPeriods: Integer; const Payment,
      PresentValue: Extended; PaymentTime: TPaymentTime): Extended;
    
    { Interest Payment (IPAYMT)  }
    function InterestPayment(const Rate: Extended; Period, NPeriods: Integer;
      const PresentValue, FutureValue: Extended; PaymentTime: TPaymentTime): Extended;
    
    { Interest Rate (IRATE) }
    function InterestRate(NPeriods: Integer; const Payment, PresentValue,
      FutureValue: Extended; PaymentTime: TPaymentTime): Extended;
    
    { Internal Rate of Return. (IRR) Needs array of cash flows. }
    function InternalRateOfReturn(const Guess: Extended;
      const CashFlows: array of Double): Extended;
    
    { Number of Periods (NPER) }
    function NumberOfPeriods(const Rate: Extended; Payment: Extended;
      const PresentValue, FutureValue: Extended; PaymentTime: TPaymentTime): Extended;
    
    { Net Present Value. (NPV) Needs array of cash flows. }
    function NetPresentValue(const Rate: Extended; const CashFlows: array of Double;
      PaymentTime: TPaymentTime): Extended;
    
    { Payment (PAYMT) }
    function Payment(Rate: Extended; NPeriods: Integer; const PresentValue,
      FutureValue: Extended; PaymentTime: TPaymentTime): Extended;
    
    { Period Payment (PPAYMT) }
    function PeriodPayment(const Rate: Extended; Period, NPeriods: Integer;
      const PresentValue, FutureValue: Extended; PaymentTime: TPaymentTime): Extended;
    
    { Present Value (PVAL) }
    function PresentValue(const Rate: Extended; NPeriods: Integer;
      const Payment, FutureValue: Extended; PaymentTime: TPaymentTime): Extended;
    
    { Straight Line depreciation (SLN) }
    function SLNDepreciation(const Cost, Salvage: Extended; Life: Integer): Extended;
    
    { Sum-of-Years-Digits depreciation (SYD) }
    function SYDDepreciation(const Cost, Salvage: Extended; Life, Period: Integer): Extended;
    
    type
      EInvalidArgument = class(EMathError) end;
    
    {-----------------------------------------------------------------------
    FPU exception/precision/rounding management
    
    The following functions allow you to control the behavior of the FPU.  With
    them you can control what constutes an FPU exception, what the default
    precision is used and finally how rounding is handled by the FPU.
    
    -----------------------------------------------------------------------}
    
    type
      TFPURoundingMode = (rmNearest, rmDown, rmUp, rmTruncate);
    
    { Return the current rounding mode }
    function GetRoundMode: TFPURoundingMode;
    
    { Set the rounding mode and return the old mode }
    function SetRoundMode(const RoundMode: TFPURoundingMode): TFPURoundingMode;
    
    type
      TFPUPrecisionMode = (pmSingle, pmReserved, pmDouble, pmExtended);
    
    { Return the current precision control mode }
    function GetPrecisionMode: TFPUPrecisionMode;
    
    { Set the precision control mode and return the old one }
    function SetPrecisionMode(const Precision: TFPUPrecisionMode): TFPUPrecisionMode;
    
    type
      TFPUException = (exInvalidOp, exDenormalized, exZeroDivide,
                       exOverflow, exUnderflow, exPrecision);
      TFPUExceptionMask = set of TFPUException;
    
    { Return the exception mask from the control word.
      Any element set in the mask prevents the FPU from raising that kind of
      exception.  Instead, it returns its best attempt at a value, often NaN or an
      infinity. The value depends on the operation and the current rounding mode. }
    function GetExceptionMask: TFPUExceptionMask;
    
    { Set a new exception mask and return the old one }
    function SetExceptionMask(const Mask: TFPUExceptionMask): TFPUExceptionMask;
    
    { Clear any pending exception bits in the status word }
    procedure ClearExceptions(RaisePending: Boolean = True);
    
    implementation
    
    uses SysConst;
    
    procedure DivMod(Dividend: Integer; Divisor: Word;
      var Result, Remainder: Word);
    asm
            PUSH    EBX
            MOV     EBX,EDX
            MOV     EDX,EAX
            SHR     EDX,16
            DIV     BX
            MOV     EBX,Remainder
            MOV     [ECX],AX
            MOV     [EBX],DX
            POP     EBX
    end;
    
    function RoundTo(const AValue: Double; const ADigit: TRoundToRange): Double;
    var
      LFactor: Double;
    begin
      LFactor := IntPower(10, ADigit);
      Result := Round(AValue / LFactor) * LFactor;
    end;
    
    function SimpleRoundTo(const AValue: Double; const ADigit: TRoundToRange = -2): Double;
    var
      LFactor: Double;
    begin
      LFactor := IntPower(10, ADigit);
      Result := Trunc((AValue / LFactor) + 0.5) * LFactor;
    end;
    
    function Annuity2(const R: Extended; N: Integer; PaymentTime: TPaymentTime;
      var CompoundRN: Extended): Extended; Forward;
    function Compound(const R: Extended; N: Integer): Extended; Forward;
    function RelSmall(const X, Y: Extended): Boolean; Forward;
    
    type
      TPoly = record
        Neg, Pos, DNeg, DPos: Extended
      end;
    
    const
      MaxIterations = 15;
    
    procedure ArgError(const Msg: string);
    begin
      raise EInvalidArgument.Create(Msg);
    end;
    
    function DegToRad(const Degrees: Extended): Extended;  { Radians := Degrees * PI / 180 }
    begin
      Result := Degrees * (PI / 180);
    end;
    
    function RadToDeg(const Radians: Extended): Extended;  { Degrees := Radians * 180 / PI }
    begin
      Result := Radians * (180 / PI);
    end;
    
    function GradToRad(const Grads: Extended): Extended;   { Radians := Grads * PI / 200 }
    begin
      Result := Grads * (PI / 200);
    end;
    
    function RadToGrad(const Radians: Extended): Extended; { Grads := Radians * 200 / PI}
    begin
      Result := Radians * (200 / PI);
    end;
    
    function CycleToRad(const Cycles: Extended): Extended; { Radians := Cycles * 2PI }
    begin
      Result := Cycles * (2 * PI);
    end;
    
    function RadToCycle(const Radians: Extended): Extended;{ Cycles := Radians / 2PI }
    begin
      Result := Radians / (2 * PI);
    end;
    
    function DegToGrad(const Degrees: Extended): Extended;
    begin
      Result := RadToGrad(DegToRad(Degrees));
    end;
    
    function DegToCycle(const Degrees: Extended): Extended;
    begin
      Result := RadToCycle(DegToRad(Degrees));
    end;
    
    function GradToDeg(const Grads: Extended): Extended;
    begin
      Result := RadToDeg(GradToRad(Grads));
    end;
    
    function GradToCycle(const Grads: Extended): Extended;
    begin
      Result := RadToCycle(GradToRad(Grads));
    end;
    
    function CycleToDeg(const Cycles: Extended): Extended;
    begin
      Result := RadToDeg(CycleToRad(Cycles));
    end;
    
    function CycleToGrad(const Cycles: Extended): Extended;
    begin
      Result := RadToGrad(CycleToRad(Cycles));
    end;
    
    function LnXP1(const X: Extended): Extended;
    { Return ln(1 + X).  Accurate for X near 0. }
    asm
            FLDLN2
            MOV     AX,WORD PTR X+8               { exponent }
            FLD     X
            CMP     AX,$3FFD                      { .4225 }
            JB      @@1
            FLD1
            FADD
            FYL2X
            JMP     @@2
    @@1:
            FYL2XP1
    @@2:
            FWAIT
    end;
    
    { Invariant: Y >= 0 & Result*X**Y = X**I.  Init Y = I and Result = 1. }
    {function IntPower(X: Extended; I: Integer): Extended;
    var
      Y: Integer;
    begin
      Y := Abs(I);
      Result := 1.0;
      while Y > 0 do begin
        while not Odd(Y) do
        begin
          Y := Y shr 1;
          X := X * X
        end;
        Dec(Y);
        Result := Result * X
      end;
      if I < 0 then Result := 1.0 / Result
    end;
    }
    function IntPower(const Base: Extended; const Exponent: Integer): Extended;
    asm
            mov     ecx, eax
            cdq
            fld1                      { Result := 1 }
            xor     eax, edx
            sub     eax, edx          { eax := Abs(Exponent) }
            jz      @@3
            fld     Base
            jmp     @@2
    @@1:    fmul    ST, ST            { X := Base * Base }
    @@2:    shr     eax,1
            jnc     @@1
            fmul    ST(1),ST          { Result := Result * X }
            jnz     @@1
            fstp    st                { pop X from FPU stack }
            cmp     ecx, 0
            jge     @@3
            fld1
            fdivrp                    { Result := 1 / Result }
    @@3:
            fwait
    end;
    
    function Compound(const R: Extended; N: Integer): Extended;
    { Return (1 + R)**N. }
    begin
      Result := IntPower(1.0 + R, N)
    end;
    
    function Annuity2(const R: Extended; N: Integer; PaymentTime: TPaymentTime;
      var CompoundRN: Extended): Extended;
    { Set CompoundRN to Compound(R, N),
      return (1+Rate*PaymentTime)*(Compound(R,N)-1)/R;
    }
    begin
      if R = 0.0 then
      begin
        CompoundRN := 1.0;
        Result := N;
      end
      else
      begin
        { 6.1E-5 approx= 2**-14 }
        if Abs(R) < 6.1E-5 then
        begin
          CompoundRN := Exp(N * LnXP1(R));
          Result := N*(1+(N-1)*R/2);
        end
        else
        begin
          CompoundRN := Compound(R, N);
          Result := (CompoundRN-1) / R
        end;
        if PaymentTime = ptStartOfPeriod then
          Result := Result * (1 + R);
      end;
    end; {Annuity2}
    
    
    procedure PolyX(const A: array of Double; X: Extended; var Poly: TPoly);
    { Compute A[0] + A[1]*X + ... + A[N]*X**N and X * its derivative.
      Accumulate positive and negative terms separately. }
    var
      I: Integer;
      Neg, Pos, DNeg, DPos: Extended;
    begin
      Neg := 0.0;
      Pos := 0.0;
      DNeg := 0.0;
      DPos := 0.0;
      for I := High(A) downto Low(A) do
      begin
        DNeg := X * DNeg + Neg;
        Neg := Neg * X;
        DPos := X * DPos + Pos;
        Pos := Pos * X;
        if A[I] >= 0.0 then
          Pos := Pos + A[I]
        else
          Neg := Neg + A[I]
      end;
      Poly.Neg := Neg;
      Poly.Pos := Pos;
      Poly.DNeg := DNeg * X;
      Poly.DPos := DPos * X;
    end; {PolyX}
    
    
    function RelSmall(const X, Y: Extended): Boolean;
    { Returns True if X is small relative to Y }
    const
      C1: Double = 1E-15;
      C2: Double = 1E-12;
    begin
      Result := Abs(X) < (C1 + C2 * Abs(Y))
    end;
    
    { Math functions. }
    
    function ArcCos(const X: Extended): Extended;
    begin
      Result := ArcTan2(Sqrt(1 - X * X), X);
    end;
    
    function ArcSin(const X: Extended): Extended;
    begin
      Result := ArcTan2(X, Sqrt(1 - X * X))
    end;
    
    function ArcTan2(const Y, X: Extended): Extended;
    asm
            FLD     Y
            FLD     X
            FPATAN
            FWAIT
    end;
    
    function Tan(const X: Extended): Extended;
    {  Tan := Sin(X) / Cos(X) }
    asm
            FLD    X
            FPTAN
            FSTP   ST(0)      { FPTAN pushes 1.0 after result }
            FWAIT
    end;
    
    function CoTan(const X: Extended): Extended;
    { CoTan := Cos(X) / Sin(X) = 1 / Tan(X) }
    asm
            FLD   X
            FPTAN
            FDIVRP
            FWAIT
    end;
    
    function Secant(const X: Extended): Extended;
    { Secant := 1 / Cos(X) }
    asm
            FLD   X
            FCOS
            FLD1
            FDIVRP
            FWAIT
    end;
    
    function Cosecant(const X: Extended): Extended;
    { Cosecant := 1 / Sin(X) }
    asm
            FLD   X
            FSIN
            FLD1
            FDIVRP
            FWAIT
    end;
    
    function Hypot(const X, Y: Extended): Extended;
    { formula: Sqrt(X*X + Y*Y)
      implemented as:  |Y|*Sqrt(1+Sqr(X/Y)), |X| < |Y| for greater precision
    var
      Temp: Extended;
    begin
      X := Abs(X);
      Y := Abs(Y);
      if X > Y then
      begin
        Temp := X;
        X := Y;
        Y := Temp;
      end;
      if X = 0 then
        Result := Y
      else         // Y > X, X <> 0, so Y > 0
        Result := Y * Sqrt(1 + Sqr(X/Y));
    end;
    }
    asm
            FLD     Y
            FABS
            FLD     X
            FABS
            FCOM
            FNSTSW  AX
            TEST    AH,$45
            JNZ      @@1        // if ST > ST(1) then swap
            FXCH    ST(1)      // put larger number in ST(1)
    @@1:    FLDZ
            FCOMP
            FNSTSW  AX
            TEST    AH,$40     // if ST = 0, return ST(1)
            JZ      @@2
            FSTP    ST         // eat ST(0)
            JMP     @@3
    @@2:    FDIV    ST,ST(1)   // ST := ST / ST(1)
            FMUL    ST,ST      // ST := ST * ST
            FLD1
            FADD               // ST := ST + 1
            FSQRT              // ST := Sqrt(ST)
            FMUL               // ST(1) := ST * ST(1); Pop ST
    @@3:    FWAIT
    end;
    
    
    procedure SinCos(const Theta: Extended; var Sin, Cos: Extended);
    asm
            FLD     Theta
            FSINCOS
            FSTP    tbyte ptr [edx]    // Cos
            FSTP    tbyte ptr [eax]    // Sin
            FWAIT
    end;
    
    { Extract exponent and mantissa from X }
    procedure Frexp(const X: Extended; var Mantissa: Extended; var Exponent: Integer);
    { Mantissa ptr in EAX, Exponent ptr in EDX }
    asm
            FLD     X
            PUSH    EAX
            MOV     dword ptr [edx], 0    { if X = 0, return 0 }
    
            FTST
            FSTSW   AX
            FWAIT
            SAHF
            JZ      @@Done
    
            FXTRACT                 // ST(1) = exponent, (pushed) ST = fraction
            FXCH
    
    // The FXTRACT instruction normalizes the fraction 1 bit higher than
    // wanted for the definition of frexp() so we need to tweak the result
    // by scaling the fraction down and incrementing the exponent.
    
            FISTP   dword ptr [edx]
            FLD1
            FCHS
            FXCH
            FSCALE                  // scale fraction
            INC     dword ptr [edx] // exponent biased to match
            FSTP ST(1)              // discard -1, leave fraction as TOS
    
    @@Done:
            POP     EAX
            FSTP    tbyte ptr [eax]
            FWAIT
    end;
    
    function Ldexp(const X: Extended; const P: Integer): Extended;
      { Result := X * (2^P) }
    asm
            PUSH    EAX
            FILD    dword ptr [ESP]
            FLD     X
            FSCALE
            POP     EAX
            FSTP    ST(1)
            FWAIT
    end;
    
    function Ceil(const X: Extended): Integer;
    begin
      Result := Integer(Trunc(X));
      if Frac(X) > 0 then
        Inc(Result);
    end;
    
    function Floor(const X: Extended): Integer;
    begin
      Result := Integer(Trunc(X));
      if Frac(X) < 0 then
        Dec(Result);
    end;
    
    { Conversion of bases:  Log.b(X) = Log.a(X) / Log.a(b)  }
    
    function Log10(const X: Extended): Extended;
      { Log.10(X) := Log.2(X) * Log.10(2) }
    asm
            FLDLG2     { Log base ten of 2 }
            FLD     X
            FYL2X
            FWAIT
    end;
    
    function Log2(const X: Extended): Extended;
    asm
            FLD1
            FLD     X
            FYL2X
            FWAIT
    end;
    
    function LogN(const Base, X: Extended): Extended;
    { Log.N(X) := Log.2(X) / Log.2(N) }
    asm
            FLD1
            FLD     X
            FYL2X
            FLD1
            FLD     Base
            FYL2X
            FDIV
            FWAIT
    end;
    
    function Poly(const X: Extended; const Coefficients: array of Double): Extended;
    { Horner's method }
    var
      I: Integer;
    begin
      Result := Coefficients[High(Coefficients)];
      for I := High(Coefficients)-1 downto Low(Coefficients) do
        Result := Result * X + Coefficients[I];
    end;
    
    function Power(const Base, Exponent: Extended): Extended;
    begin
      if Exponent = 0.0 then
        Result := 1.0               { n**0 = 1 }
      else if (Base = 0.0) and (Exponent > 0.0) then
        Result := 0.0               { 0**n = 0, n > 0 }
      else if (Frac(Exponent) = 0.0) and (Abs(Exponent) <= MaxInt) then
        Result := IntPower(Base, Integer(Trunc(Exponent)))
      else
        Result := Exp(Exponent * Ln(Base))
    end;
    
    { Hyperbolic functions }
    
    function Cosh(const X: Extended): Extended;
    begin
      if IsZero(X) then
        Result := 1
      else
        Result := (Exp(X) + Exp(-X)) / 2;
    end;
    
    function Sinh(const X: Extended): Extended;
    begin
      if IsZero(X) then
        Result := 0
      else
        Result := (Exp(X) - Exp(-X)) / 2;
    end;
    
    function Tanh(const X: Extended): Extended;
    begin
      if IsZero(X) then
        Result := 0
      else
        Result := SinH(X) / CosH(X);
    end;
    
    function ArcCosh(const X: Extended): Extended;
    begin
      Result := Ln(X + Sqrt((X - 1) / (X + 1)) * (X + 1));
    end;
    
    function ArcSinh(const X: Extended): Extended;
    begin
      Result := Ln(X + Sqrt((X * X) + 1));
    end;
    
    function ArcTanh(const X: Extended): Extended;
    begin
      if SameValue(X, 1) then
        Result := Infinity
      else if SameValue(X, -1) then
        Result := NegInfinity
      else
        Result := 0.5 * Ln((1 + X) / (1 - X));
    end;
    
    function Cot(const X: Extended): Extended;
    begin
      Result := CoTan(X);
    end;
    
    function Sec(const X: Extended): Extended;
    begin
      Result := Secant(X);
    end;
    
    function Csc(const X: Extended): Extended;
    begin
      Result := Cosecant(X);
    end;
    
    function CotH(const X: Extended): Extended;
    begin
      Result := 1 / TanH(X);
    end;
    
    function SecH(const X: Extended): Extended;
    begin
      Result := 1 / CosH(X);
    end;
    
    function CscH(const X: Extended): Extended;
    begin
      Result := 1 / SinH(X);
    end;
    
    function ArcCot(const X: Extended): Extended;
    begin
      if IsZero(X) then
        Result := PI / 2
      else
        Result := ArcTan(1 / X);
    end;
    
    function ArcSec(const X: Extended): Extended;
    begin
      if IsZero(X) then
        Result := Infinity
      else
        Result := ArcCos(1 / X);
    end;
    
    function ArcCsc(const X: Extended): Extended;
    begin
      if IsZero(X) then
        Result := Infinity
      else
        Result := ArcSin(1 / X);
    end;
    
    function ArcCotH(const X: Extended): Extended;
    begin
      if SameValue(X, 1) then
        Result := Infinity
      else if SameValue(X, -1) then
        Result := NegInfinity
      else
        Result := 0.5 * Ln((X + 1) / (X - 1));
    end;
    
    function ArcSecH(const X: Extended): Extended;
    begin
      if IsZero(X) then
        Result := Infinity
      else if SameValue(X, 1) then
        Result := 0
      else
        Result := Ln((Sqrt(1 - X * X) + 1) / X);
    end;
    
    function ArcCscH(const X: Extended): Extended;
    begin
      Result := Ln(Sqrt(1 + (1 / (X * X)) + (1 / X)));
    end;
    
    function IsNan(const AValue: Single): Boolean;
    begin
      Result := ((PLongWord(@AValue)^ and $7F800000)  = $7F800000) and
                ((PLongWord(@AValue)^ and $007FFFFF) <> $00000000);
    end;
    
    function IsNan(const AValue: Double): Boolean;
    begin
      Result := ((PInt64(@AValue)^ and $7FF0000000000000)  = $7FF0000000000000) and
                ((PInt64(@AValue)^ and $000FFFFFFFFFFFFF) <> $0000000000000000);
    end;
    
    function IsNan(const AValue: Extended): Boolean;
    type
      TExtented = packed record
        Mantissa: Int64;
        Exponent: Word;
      end;
      PExtended = ^TExtented;
    begin
      Result := ((PExtended(@AValue)^.Exponent and $7FFF)  = $7FFF) and
                ((PExtended(@AValue)^.Mantissa and $7FFFFFFFFFFFFFFF) <> 0);
    end;
    
    function IsInfinite(const AValue: Double): Boolean;
    begin
      Result := ((PInt64(@AValue)^ and $7FF0000000000000) = $7FF0000000000000) and
                ((PInt64(@AValue)^ and $000FFFFFFFFFFFFF) = $0000000000000000);
    end;
    
    { Statistical functions }
    
    function Mean(const Data: array of Double): Extended;
    begin
      Result := SUM(Data) / (High(Data) - Low(Data) + 1);
    end;
    
    function MinValue(const Data: array of Double): Double;
    var
      I: Integer;
    begin
      Result := Data[Low(Data)];
      for I := Low(Data) + 1 to High(Data) do
        if Result > Data[I] then
          Result := Data[I];
    end;
    
    function MinIntValue(const Data: array of Integer): Integer;
    var
      I: Integer;
    begin
      Result := Data[Low(Data)];
      for I := Low(Data) + 1 to High(Data) do
        if Result > Data[I] then
          Result := Data[I];
    end;
    
    function Min(const A, B: Integer): Integer;
    begin
      if A < B then
        Result := A
      else
        Result := B;
    end;
    
    function Min(const A, B: Int64): Int64;
    begin
      if A < B then
        Result := A
      else
        Result := B;
    end;
    
    function Min(const A, B: Single): Single;
    begin
      if A < B then
        Result := A
      else
        Result := B;
    end;
    
    function Min(const A, B: Double): Double;
    begin
      if A < B then
        Result := A
      else
        Result := B;
    end;
    
    function Min(const A, B: Extended): Extended;
    begin
      if A < B then
        Result := A
      else
        Result := B;
    end;
    
    function MaxValue(const Data: array of Double): Double;
    var
      I: Integer;
    begin
      Result := Data[Low(Data)];
      for I := Low(Data) + 1 to High(Data) do
        if Result < Data[I] then
          Result := Data[I];
    end;
    
    function MaxIntValue(const Data: array of Integer): Integer;
    var
      I: Integer;
    begin
      Result := Data[Low(Data)];
      for I := Low(Data) + 1 to High(Data) do
        if Result < Data[I] then
          Result := Data[I];
    end;
    
    function Max(const A, B: Integer): Integer;
    begin
      if A > B then
        Result := A
      else
        Result := B;
    end;
    
    function Max(const A, B: Int64): Int64;
    begin
      if A > B then
        Result := A
      else
        Result := B;
    end;
    
    function Max(const A, B: Single): Single;
    begin
      if A > B then
        Result := A
      else
        Result := B;
    end;
    
    function Max(const A, B: Double): Double;
    begin
      if A > B then
        Result := A
      else
        Result := B;
    end;
    
    function Max(const A, B: Extended): Extended;
    begin
      if A > B then
        Result := A
      else
        Result := B;
    end;
    
    function Sign(const AValue: Integer): TValueSign;
    begin
      Result := ZeroValue;
      if AValue < 0 then
        Result := NegativeValue
      else if AValue > 0 then
        Result := PositiveValue;
    end;
    
    function Sign(const AValue: Int64): TValueSign;
    begin
      Result := ZeroValue;
      if AValue < 0 then
        Result := NegativeValue
      else if AValue > 0 then
        Result := PositiveValue;
    end;
    
    function Sign(const AValue: Double): TValueSign;
    begin
      if ((PInt64(@AValue)^ and $7FFFFFFFFFFFFFFF) = $0000000000000000) then
        Result := ZeroValue
      else if ((PInt64(@AValue)^ and $8000000000000000) = $8000000000000000) then
        Result := NegativeValue
      else
        Result := PositiveValue;
    end;
    
    const
      FuzzFactor = 1000;
      ExtendedResolution = 1E-19 * FuzzFactor;
      DoubleResolution   = 1E-15 * FuzzFactor;
      SingleResolution   = 1E-7 * FuzzFactor;
    
    function CompareValue(const A, B: Extended; Epsilon: Extended): TValueRelationship;
    begin
      if SameValue(A, B, Epsilon) then
        Result := EqualsValue
      else if A < B then
        Result := LessThanValue
      else
        Result := GreaterThanValue;
    end;
    
    function CompareValue(const A, B: Double; Epsilon: Double): TValueRelationship;
    begin
      if SameValue(A, B, Epsilon) then
        Result := EqualsValue
      else if A < B then
        Result := LessThanValue
      else
        Result := GreaterThanValue;
    end;
    
    function CompareValue(const A, B: Single; Epsilon: Single): TValueRelationship;
    begin
      if SameValue(A, B, Epsilon) then
        Result := EqualsValue
      else if A < B then
        Result := LessThanValue
      else
        Result := GreaterThanValue;
    end;
    
    function CompareValue(const A, B: Integer): TValueRelationship;
    begin
      if A = B then
        Result := EqualsValue
      else if A < B then
        Result := LessThanValue
      else
        Result := GreaterThanValue;
    end;
    
    function CompareValue(const A, B: Int64): TValueRelationship;
    begin
      if A = B then
        Result := EqualsValue
      else if A < B then
        Result := LessThanValue
      else
        Result := GreaterThanValue;
    end;
    
    function SameValue(const A, B: Extended; Epsilon: Extended): Boolean;
    begin
      if Epsilon = 0 then
        Epsilon := Max(Min(Abs(A), Abs(B)) * ExtendedResolution, ExtendedResolution);
      if A > B then
        Result := (A - B) <= Epsilon
      else
        Result := (B - A) <= Epsilon;
    end;
    
    function SameValue(const A, B: Double; Epsilon: Double): Boolean;
    begin
      if Epsilon = 0 then
        Epsilon := Max(Min(Abs(A), Abs(B)) * DoubleResolution, DoubleResolution);
      if A > B then
        Result := (A - B) <= Epsilon
      else
        Result := (B - A) <= Epsilon;
    end;
    
    function SameValue(const A, B: Single; Epsilon: Single): Boolean;
    begin
      if Epsilon = 0 then
        Epsilon := Max(Min(Abs(A), Abs(B)) * SingleResolution, SingleResolution);
      if A > B then
        Result := (A - B) <= Epsilon
      else
        Result := (B - A) <= Epsilon;
    end;
    
    function IsZero(const A: Extended; Epsilon: Extended): Boolean;
    begin
      if Epsilon = 0 then
        Epsilon := ExtendedResolution;
      Result := Abs(A) <= Epsilon;
    end;
    
    function IsZero(const A: Double; Epsilon: Double): Boolean;
    begin
      if Epsilon = 0 then
        Epsilon := DoubleResolution;
      Result := Abs(A) <= Epsilon;
    end;
    
    function IsZero(const A: Single; Epsilon: Single): Boolean;
    begin
      if Epsilon = 0 then
        Epsilon := SingleResolution;
      Result := Abs(A) <= Epsilon;
    end;
    
    function IfThen(AValue: Boolean; const ATrue: Integer; const AFalse: Integer): Integer;
    begin
      if AValue then
        Result := ATrue
      else
        Result := AFalse;
    end;
    
    function IfThen(AValue: Boolean; const ATrue: Int64; const AFalse: Int64): Int64;
    begin
      if AValue then
        Result := ATrue
      else
        Result := AFalse;
    end;
    
    function IfThen(AValue: Boolean; const ATrue: Double; const AFalse: Double): Double;
    begin
      if AValue then
        Result := ATrue
      else
        Result := AFalse;
    end;
    
    function RandomRange(const AFrom, ATo: Integer): Integer;
    begin
      if AFrom > ATo then
        Result := Random(AFrom - ATo) + ATo
      else
        Result := Random(ATo - AFrom) + AFrom;
    end;
    
    function RandomFrom(const AValues: array of Integer): Integer;
    begin
      Result := AValues[Random(High(AValues) + 1)];
    end;
    
    function RandomFrom(const AValues: array of Int64): Int64;
    begin
      Result := AValues[Random(High(AValues) + 1)];
    end;
    
    function RandomFrom(const AValues: array of Double): Double;
    begin
      Result := AValues[Random(High(AValues) + 1)];
    end;
    
    { Range testing functions }
    
    function InRange(const AValue, AMin, AMax: Integer): Boolean;
    begin
      Result := (AValue >= AMin) and (AValue <= AMax);
    end;
    
    function InRange(const AValue, AMin, AMax: Int64): Boolean;
    begin
      Result := (AValue >= AMin) and (AValue <= AMax);
    end;
    
    function InRange(const AValue, AMin, AMax: Double): Boolean;
    begin
      Result := (AValue >= AMin) and (AValue <= AMax);
    end;
    
    { Range truncation functions }
    
    function EnsureRange(const AValue, AMin, AMax: Integer): Integer;
    begin
      Result := AValue;
      assert(AMin <= AMax);
      if Result < AMin then
        Result := AMin;
      if Result > AMax then
        Result := AMax;
    end;
    
    function EnsureRange(const AValue, AMin, AMax: Int64): Int64;
    begin
      Result := AValue;
      assert(AMin <= AMax);
      if Result < AMin then
        Result := AMin;
      if Result > AMax then
        Result := AMax;
    end;
    
    function EnsureRange(const AValue, AMin, AMax: Double): Double;
    begin
      Result := AValue;
      assert(AMin <= AMax);
      if Result < AMin then
        Result := AMin;
      if Result > AMax then
        Result := AMax;
    end;
    
    procedure MeanAndStdDev(const Data: array of Double; var Mean, StdDev: Extended);
    var
      S: Extended;
      N,I: Integer;
    begin
      N := High(Data)- Low(Data) + 1;
      if N = 1 then
      begin
        Mean := Data[0];
        StdDev := Data[0];
        Exit;
      end;
      Mean := Sum(Data) / N;
      S := 0;               // sum differences from the mean, for greater accuracy
      for I := Low(Data) to High(Data) do
        S := S + Sqr(Mean - Data[I]);
      StdDev := Sqrt(S / (N - 1));
    end;
    
    procedure MomentSkewKurtosis(const Data: array of Double;
      var M1, M2, M3, M4, Skew, Kurtosis: Extended);
    var
      Sum, SumSquares, SumCubes, SumQuads, OverN, Accum, M1Sqr, S2N, S3N: Extended;
      I: Integer;
    begin
      OverN := 1 / (High(Data) - Low(Data) + 1);
      Sum := 0;
      SumSquares := 0;
      SumCubes := 0;
      SumQuads := 0;
      for I := Low(Data) to High(Data) do
      begin
        Sum := Sum + Data[I];
        Accum := Sqr(Data[I]);
        SumSquares := SumSquares + Accum;
        Accum := Accum*Data[I];
        SumCubes := SumCubes + Accum;
        SumQuads := SumQuads + Accum*Data[I];
      end;
      M1 := Sum * OverN;
      M1Sqr := Sqr(M1);
      S2N := SumSquares * OverN;
      S3N := SumCubes * OverN;
      M2 := S2N - M1Sqr;
      M3 := S3N - (M1 * 3 * S2N) + 2*M1Sqr*M1;
      M4 := (SumQuads * OverN) - (M1 * 4 * S3N) + (M1Sqr*6*S2N - 3*Sqr(M1Sqr));
      Skew := M3 * Power(M2, -3/2);   // = M3 / Power(M2, 3/2)
      Kurtosis := M4 / Sqr(M2);
    end;
    
    function Norm(const Data: array of Double): Extended;
    begin
      Result := Sqrt(SumOfSquares(Data));
    end;
    
    function PopnStdDev(const Data: array of Double): Extended;
    begin
      Result := Sqrt(PopnVariance(Data))
    end;
    
    function PopnVariance(const Data: array of Double): Extended;
    begin
      Result := TotalVariance(Data) / (High(Data) - Low(Data) + 1)
    end;
    
    function RandG(Mean, StdDev: Extended): Extended;
    { Marsaglia-Bray algorithm }
    var
      U1, S2: Extended;
    begin
      repeat
        U1 := 2*Random - 1;
        S2 := Sqr(U1) + Sqr(2*Random-1);
      until S2 < 1;
      Result := Sqrt(-2*Ln(S2)/S2) * U1 * StdDev + Mean;
    end;
    
    function StdDev(const Data: array of Double): Extended;
    begin
      Result := Sqrt(Variance(Data))
    end;
    
    procedure RaiseOverflowError; forward;
    
    function SumInt(const Data: array of Integer): Integer;
    
    
    
    
    
    
    
    
    
    asm  // IN: EAX = ptr to Data, EDX = High(Data) = Count - 1
         // loop unrolled 4 times, 5 clocks per loop, 1.2 clocks per datum
          PUSH EBX
          MOV  ECX, EAX         // ecx = ptr to data
          MOV  EBX, EDX
          XOR  EAX, EAX
          AND  EDX, not 3
          AND  EBX, 3
          SHL  EDX, 2
          JMP  @Vector.Pointer[EBX*4]
    @Vector:
          DD @@1
          DD @@2
          DD @@3
          DD @@4
    @@4:
          ADD  EAX, [ECX+12+EDX]
          JO   RaiseOverflowError
    @@3:
          ADD  EAX, [ECX+8+EDX]
          JO   RaiseOverflowError
    @@2:
          ADD  EAX, [ECX+4+EDX]
          JO   RaiseOverflowError
    @@1:
          ADD  EAX, [ECX+EDX]
          JO   RaiseOverflowError
          SUB  EDX,16
          JNS  @@4
          POP  EBX
    end;
    
    
    procedure RaiseOverflowError;
    begin
      raise EIntOverflow.Create(SIntOverflow);
    end;
    
    function SUM(const Data: array of Double): Extended;
    
    
    
    
    
    
    
    
    
    asm  // IN: EAX = ptr to Data, EDX = High(Data) = Count - 1
         // Uses 4 accumulators to minimize read-after-write delays and loop overhead
         // 5 clocks per loop, 4 items per loop = 1.2 clocks per item
           FLDZ
           MOV      ECX, EDX
           FLD      ST(0)
           AND      EDX, not 3
           FLD      ST(0)
           AND      ECX, 3
           FLD      ST(0)
           SHL      EDX, 3      // count * sizeof(Double) = count * 8
           JMP      @Vector.Pointer[ECX*4]
    @Vector:
           DD @@1
           DD @@2
           DD @@3
           DD @@4
    @@4:   FADD     qword ptr [EAX+EDX+24]    // 1
           FXCH     ST(3)                     // 0
    @@3:   FADD     qword ptr [EAX+EDX+16]    // 1
           FXCH     ST(2)                     // 0
    @@2:   FADD     qword ptr [EAX+EDX+8]     // 1
           FXCH     ST(1)                     // 0
    @@1:   FADD     qword ptr [EAX+EDX]       // 1
           FXCH     ST(2)                     // 0
           SUB      EDX, 32
           JNS      @@4
           FADDP    ST(3),ST                  // ST(3) := ST + ST(3); Pop ST
           FADD                               // ST(1) := ST + ST(1); Pop ST
           FADD                               // ST(1) := ST + ST(1); Pop ST
           FWAIT
    end;
    
    
    function SumOfSquares(const Data: array of Double): Extended;
    var
      I: Integer;
    begin
      Result := 0.0;
      for I := Low(Data) to High(Data) do
        Result := Result + Sqr(Data[I]);
    end;
    
    procedure SumsAndSquares(const Data: array of Double; var Sum, SumOfSquares: Extended);
    
    
    
    
    
    
    
    
    
    
    
    
    
    asm  // IN:  EAX = ptr to Data
         //      EDX = High(Data) = Count - 1
         //      ECX = ptr to Sum
         // Est. 17 clocks per loop, 4 items per loop = 4.5 clocks per data item
           FLDZ                 // init Sum accumulator
           PUSH     ECX
           MOV      ECX, EDX
           FLD      ST(0)       // init Sqr1 accum.
           AND      EDX, not 3
           FLD      ST(0)       // init Sqr2 accum.
           AND      ECX, 3
           FLD      ST(0)       // init/simulate last data item left in ST
           SHL      EDX, 3      // count * sizeof(Double) = count * 8
           JMP      @Vector.Pointer[ECX*4]
    @Vector:
           DD @@1
           DD @@2
           DD @@3
           DD @@4
    @@4:   FADD                            // Sqr2 := Sqr2 + Sqr(Data4); Pop Data4
           FLD     qword ptr [EAX+EDX+24]  // Load Data1
           FADD    ST(3),ST                // Sum := Sum + Data1
           FMUL    ST,ST                   // Data1 := Sqr(Data1)
    @@3:   FLD     qword ptr [EAX+EDX+16]  // Load Data2
           FADD    ST(4),ST                // Sum := Sum + Data2
           FMUL    ST,ST                   // Data2 := Sqr(Data2)
           FXCH                            // Move Sqr(Data1) into ST(0)
           FADDP   ST(3),ST                // Sqr1 := Sqr1 + Sqr(Data1); Pop Data1
    @@2:   FLD     qword ptr [EAX+EDX+8]   // Load Data3
           FADD    ST(4),ST                // Sum := Sum + Data3
           FMUL    ST,ST                   // Data3 := Sqr(Data3)
           FXCH                            // Move Sqr(Data2) into ST(0)
           FADDP   ST(3),ST                // Sqr1 := Sqr1 + Sqr(Data2); Pop Data2
    @@1:   FLD     qword ptr [EAX+EDX]     // Load Data4
           FADD    ST(4),ST                // Sum := Sum + Data4
           FMUL    ST,ST                   // Sqr(Data4)
           FXCH                            // Move Sqr(Data3) into ST(0)
           FADDP   ST(3),ST                // Sqr1 := Sqr1 + Sqr(Data3); Pop Data3
           SUB     EDX,32
           JNS     @@4
           FADD                         // Sqr2 := Sqr2 + Sqr(Data4); Pop Data4
           POP     ECX
           FADD                         // Sqr1 := Sqr2 + Sqr1; Pop Sqr2
           FXCH                         // Move Sum1 into ST(0)
           MOV     EAX, SumOfSquares
           FSTP    tbyte ptr [ECX]      // Sum := Sum1; Pop Sum1
           FSTP    tbyte ptr [EAX]      // SumOfSquares := Sum1; Pop Sum1
           FWAIT
    end;
    
    
    function TotalVariance(const Data: array of Double): Extended;
    var
      Sum, SumSquares: Extended;
    begin
      SumsAndSquares(Data, Sum, SumSquares);
      Result := SumSquares - Sqr(Sum)/(High(Data) - Low(Data) + 1);
    end;
    
    function Variance(const Data: array of Double): Extended;
    begin
      Result := TotalVariance(Data) / (High(Data) - Low(Data))
    end;
    
    
    { Depreciation functions. }
    
    function DoubleDecliningBalance(const Cost, Salvage: Extended; Life, Period: Integer): Extended;
    { dv := cost * (1 - 2/life)**(period - 1)
      DDB = (2/life) * dv
      if DDB > dv - salvage then DDB := dv - salvage
      if DDB < 0 then DDB := 0
    }
    var
      DepreciatedVal, Factor: Extended;
    begin
      Result := 0;
      if (Period < 1) or (Life < Period) or (Life < 1) or (Cost <= Salvage) then
        Exit;
    
      {depreciate everything in period 1 if life is only one or two periods}
      if ( Life <= 2 ) then
      begin
        if ( Period = 1 ) then
          DoubleDecliningBalance:=Cost-Salvage
        else
          DoubleDecliningBalance:=0; {all depreciation occurred in first period}
        exit;
      end;
      Factor := 2.0 / Life;
    
      DepreciatedVal := Cost * IntPower((1.0 - Factor), Period - 1);
      {DepreciatedVal is Cost-(sum of previous depreciation results)}
    
      Result := Factor * DepreciatedVal;
      {Nominal computed depreciation for this period.  The rest of the
       function applies limits to this nominal value. }
    
      {Only depreciate until total depreciation equals cost-salvage.}
      if Result > DepreciatedVal - Salvage then
        Result := DepreciatedVal - Salvage;
    
      {No more depreciation after salvage value is reached.  This is mostly a nit.
       If Result is negative at this point, it's very close to zero.}
      if Result < 0.0 then
        Result := 0.0;
    end;
    
    function SLNDepreciation(const Cost, Salvage: Extended; Life: Integer): Extended;
    { Spreads depreciation linearly over life. }
    begin
      if Life < 1 then ArgError('SLNDepreciation');
      Result := (Cost - Salvage) / Life
    end;
    
    function SYDDepreciation(const Cost, Salvage: Extended; Life, Period: Integer): Extended;
    { SYD = (cost - salvage) * (life - period + 1) / (life*(life + 1)/2) }
    { Note: life*(life+1)/2 = 1+2+3+...+life "sum of years"
            The depreciation factor varies from life/sum_of_years in first period = 1
                                           downto  1/sum_of_years in last period = life.
            Total depreciation over life is cost-salvage.}
    var
      X1, X2: Extended;
    begin
      Result := 0;
      if (Period < 1) or (Life < Period) or (Cost <= Salvage) then Exit;
      X1 := 2 * (Life - Period + 1);
      X2 := Life * (Life + 1);
      Result := (Cost - Salvage) * X1 / X2
    end;
    
    { Discounted cash flow functions. }
    
    function InternalRateOfReturn(const Guess: Extended; const CashFlows: array of Double): Extended;
    {
    Use Newton's method to solve NPV = 0, where NPV is a polynomial in
    x = 1/(1+rate).  Split the coefficients into negative and postive sets:
      neg + pos = 0, so pos = -neg, so  -neg/pos = 1
    Then solve:
      log(-neg/pos) = 0
    
      Let  t = log(1/(1+r) = -LnXP1(r)
      then r = exp(-t) - 1
    Iterate on t, then use the last equation to compute r.
    }
    var
      T, Y: Extended;
      Poly: TPoly;
      K, Count: Integer;
    
      function ConditionP(const CashFlows: array of Double): Integer;
      { Guarantees existence and uniqueness of root.  The sign of payments
        must change exactly once, the net payout must be always > 0 for
        first portion, then each payment must be >= 0.
        Returns: 0 if condition not satisfied, > 0 if condition satisfied
        and this is the index of the first value considered a payback. }
      var
        X: Double;
        I, K: Integer;
      begin
        K := High(CashFlows);
        while (K >= 0) and (CashFlows[K] >= 0.0) do Dec(K);
        Inc(K);
        if K > 0 then
        begin
          X := 0.0;
          I := 0;
          while I < K do
          begin
            X := X + CashFlows[I];
            if X >= 0.0 then
            begin
              K := 0;
              Break;
            end;
            Inc(I)
          end
        end;
        ConditionP := K
      end;
    
    begin
      InternalRateOfReturn := 0;
      K := ConditionP(CashFlows);
      if K < 0 then ArgError('InternalRateOfReturn');
      if K = 0 then
      begin
        if Guess <= -1.0 then ArgError('InternalRateOfReturn');
        T := -LnXP1(Guess)
      end else
        T := 0.0;
      for Count := 1 to MaxIterations do
      begin
        PolyX(CashFlows, Exp(T), Poly);
        if Poly.Pos <= Poly.Neg then ArgError('InternalRateOfReturn');
        if (Poly.Neg >= 0.0) or (Poly.Pos <= 0.0) then
        begin
          InternalRateOfReturn := -1.0;
          Exit;
        end;
        with Poly do
          Y := Ln(-Neg / Pos) / (DNeg / Neg - DPos / Pos);
        T := T - Y;
        if RelSmall(Y, T) then
        begin
          InternalRateOfReturn := Exp(-T) - 1.0;
          Exit;
        end
      end;
      ArgError('InternalRateOfReturn');
    end;
    
    function NetPresentValue(const Rate: Extended; const CashFlows: array of Double;
      PaymentTime: TPaymentTime): Extended;
    { Caution: The sign of NPV is reversed from what would be expected for standard
       cash flows!}
    var
      rr: Extended;
      I: Integer;
    begin
      if Rate <= -1.0 then ArgError('NetPresentValue');
      rr := 1/(1+Rate);
      result := 0;
      for I := High(CashFlows) downto Low(CashFlows) do
        result := rr * result + CashFlows[I];
      if PaymentTime = ptEndOfPeriod then result := rr * result;
    end;
    
    { Annuity functions. }
    
    {---------------
    From the point of view of A, amounts received by A are positive and
    amounts disbursed by A are negative (e.g. a borrower's loan repayments
    are regarded by the borrower as negative).
    
    Given interest rate r, number of periods n:
      compound(r, n) = (1 + r)**n               "Compounding growth factor"
      annuity(r, n) = (compound(r, n)-1) / r   "Annuity growth factor"
    
    Given future value fv, periodic payment pmt, present value pv and type
    of payment (start, 1 , or end of period, 0) pmtTime, financial variables satisfy:
    
      fv = -pmt*(1 + r*pmtTime)*annuity(r, n) - pv*compound(r, n)
    
    For fv, pv, pmt:
    
      C := compound(r, n)
      A := (1 + r*pmtTime)*annuity(r, n)
      Compute both at once in Annuity2.
    
      if C > 1E16 then A = C/r, so:
        fv := meaningless
        pv := -pmt*(pmtTime+1/r)
        pmt := -pv*r/(1 + r*pmtTime)
      else
        fv := -pmt(1+r*pmtTime)*A - pv*C
        pv := (-pmt(1+r*pmtTime)*A - fv)/C
        pmt := (-pv*C-fv)/((1+r*pmtTime)*A)
    ---------------}
    
    function PaymentParts(Period, NPeriods: Integer; Rate, PresentValue,
      FutureValue: Extended; PaymentTime: TPaymentTime; var IntPmt: Extended):
      Extended;
    var
      Crn:extended; { =Compound(Rate,NPeriods) }
      Crp:extended; { =Compound(Rate,Period-1) }
      Arn:extended; { =Annuity2(...) }
    
    begin
      if Rate <= -1.0 then ArgError('PaymentParts');
      Crp:=Compound(Rate,Period-1);
      Arn:=Annuity2(Rate,NPeriods,PaymentTime,Crn);
      IntPmt:=(FutureValue*(Crp-1)-PresentValue*(Crn-Crp))/Arn;
      PaymentParts:=(-FutureValue-PresentValue)*Crp/Arn;
    end;
    
    function FutureValue(const Rate: Extended; NPeriods: Integer; const Payment,
      PresentValue: Extended; PaymentTime: TPaymentTime): Extended;
    var
      Annuity, CompoundRN: Extended;
    begin
      if Rate <= -1.0 then ArgError('FutureValue');
      Annuity := Annuity2(Rate, NPeriods, PaymentTime, CompoundRN);
      if CompoundRN > 1.0E16 then ArgError('FutureValue');
      FutureValue := -Payment * Annuity - PresentValue * CompoundRN
    end;
    
    function InterestPayment(const Rate: Extended; Period, NPeriods: Integer;
      const PresentValue, FutureValue: Extended; PaymentTime: TPaymentTime): Extended;
    var
      Crp:extended; { compound(rate,period-1)}
      Crn:extended; { compound(rate,nperiods)}
      Arn:extended; { annuityf(rate,nperiods)}
    begin
      if (Rate <= -1.0)
        or (Period < 1) or (Period > NPeriods) then ArgError('InterestPayment');
      Crp:=Compound(Rate,Period-1);
      Arn:=Annuity2(Rate,Nperiods,PaymentTime,Crn);
      InterestPayment:=(FutureValue*(Crp-1)-PresentValue*(Crn-Crp))/Arn;
    end;
    
    function InterestRate(NPeriods: Integer; const Payment, PresentValue,
      FutureValue: Extended; PaymentTime: TPaymentTime): Extended;
    {
    Given:
      First and last payments are non-zero and of opposite signs.
      Number of periods N >= 2.
    Convert data into cash flow of first, N-1 payments, last with
    first < 0, payment > 0, last > 0.
    Compute the IRR of this cash flow:
      0 = first + pmt*x + pmt*x**2 + ... + pmt*x**(N-1) + last*x**N
    where x = 1/(1 + rate).
    Substitute x = exp(t) and apply Newton's method to
      f(t) = log(pmt*x + ... + last*x**N) / -first
    which has a unique root given the above hypotheses.
    }
    var
      X, Y, Z, First, Pmt, Last, T, ET, EnT, ET1: Extended;
      Count: Integer;
      Reverse: Boolean;
    
      function LostPrecision(X: Extended): Boolean;
      asm
            XOR     EAX, EAX
            MOV     BX,WORD PTR X+8
            INC     EAX
            AND     EBX, $7FF0
            JZ      @@1
            CMP     EBX, $7FF0
            JE      @@1
            XOR     EAX,EAX
      @@1:
      end;
    
    begin
      Result := 0;
      if NPeriods <= 0 then ArgError('InterestRate');
      Pmt := Payment;
      if PaymentTime = ptEndOfPeriod then
      begin
        X := PresentValue;
        Y := FutureValue + Payment
      end
      else
      begin
        X := PresentValue + Payment;
        Y := FutureValue
      end;
      First := X;
      Last := Y;
      Reverse := False;
      if First * Payment > 0.0 then
      begin
        Reverse := True;
        T := First;
        First := Last;
        Last := T
      end;
      if first > 0.0 then
      begin
        First := -First;
        Pmt := -Pmt;
        Last := -Last
      end;
      if (First = 0.0) or (Last < 0.0) then ArgError('InterestRate');
      T := 0.0;                     { Guess at solution }
      for Count := 1 to MaxIterations do
      begin
        EnT := Exp(NPeriods * T);
        if {LostPrecision(EnT)} ent=(ent+1) then
        begin
          Result := -Pmt / First;
          if Reverse then
            Result := Exp(-LnXP1(Result)) - 1.0;
          Exit;
        end;
        ET := Exp(T);
        ET1 := ET - 1.0;
        if ET1 = 0.0 then
        begin
          X := NPeriods;
          Y := X * (X - 1.0) / 2.0
        end
        else
        begin
          X := ET * (Exp((NPeriods - 1) * T)-1.0) / ET1;
          Y := (NPeriods * EnT - ET - X * ET) / ET1
        end;
        Z := Pmt * X + Last * EnT;
        Y := Ln(Z / -First) / ((Pmt * Y + Last * NPeriods *EnT) / Z);
        T := T - Y;
        if RelSmall(Y, T) then
        begin
          if not Reverse then T := -T;
          InterestRate := Exp(T)-1.0;
          Exit;
        end
      end;
      ArgError('InterestRate');
    end;
    
    function NumberOfPeriods(const Rate: Extended; Payment: Extended;
      const PresentValue, FutureValue: Extended; PaymentTime: TPaymentTime): Extended;
    
    { If Rate = 0 then nper := -(pv + fv) / pmt
      else cf := pv + pmt * (1 + rate*pmtTime) / rate
           nper := LnXP1(-(pv + fv) / cf) / LnXP1(rate) }
    
    var
      PVRPP: Extended; { =PV*Rate+Payment } {"initial cash flow"}
      T:     Extended;
    
    begin
    
      if Rate <= -1.0 then ArgError('NumberOfPeriods');
    
    {whenever both Payment and PaymentTime are given together, the PaymentTime has the effect
     of modifying the effective Payment by the interest accrued on the Payment}
    
      if ( PaymentTime=ptStartOfPeriod ) then
        Payment:=Payment*(1+Rate);
    
    {if the payment exactly matches the interest accrued periodically on the
     presentvalue, then an infinite number of payments are going to be
     required to effect a change from presentvalue to futurevalue.  The
     following catches that specific error where payment is exactly equal,
     but opposite in sign to the interest on the present value.  If PVRPP
     ("initial cash flow") is simply close to zero, the computation will
     be numerically unstable, but not as likely to cause an error.}
    
      PVRPP:=PresentValue*Rate+Payment;
      if PVRPP=0 then ArgError('NumberOfPeriods');
    
      { 6.1E-5 approx= 2**-14 }
      if ( ABS(Rate)<6.1E-5 ) then
        Result:=-(PresentValue+FutureValue)/PVRPP
      else
      begin
    
    {starting with the initial cash flow, each compounding period cash flow
     should result in the current value approaching the final value.  The
     following test combines a number of simultaneous conditions to ensure
     reasonableness of the cashflow before computing the NPER.}
    
        T:= -(PresentValue+FutureValue)*Rate/PVRPP;
        if  T<=-1.0  then ArgError('NumberOfPeriods');
        Result := LnXP1(T) / LnXP1(Rate)
      end;
      NumberOfPeriods:=Result;
    end;
    
    function Payment(Rate: Extended; NPeriods: Integer; const PresentValue,
      FutureValue: Extended; PaymentTime: TPaymentTime): Extended;
    var
      Annuity, CompoundRN: Extended;
    begin
      if Rate <= -1.0 then ArgError('Payment');
      Annuity := Annuity2(Rate, NPeriods, PaymentTime, CompoundRN);
      if CompoundRN > 1.0E16 then
        Payment := -PresentValue * Rate / (1 + Integer(PaymentTime) * Rate)
      else
        Payment := (-PresentValue * CompoundRN - FutureValue) / Annuity
    end;
    
    function PeriodPayment(const Rate: Extended; Period, NPeriods: Integer;
      const PresentValue, FutureValue: Extended; PaymentTime: TPaymentTime): Extended;
    var
      Junk: Extended;
    begin
      if (Rate <= -1.0) or (Period < 1) or (Period > NPeriods) then ArgError('PeriodPayment');
      PeriodPayment := PaymentParts(Period, NPeriods, Rate, PresentValue,
           FutureValue, PaymentTime, Junk);
    end;
    
    function PresentValue(const Rate: Extended; NPeriods: Integer; const Payment,
      FutureValue: Extended; PaymentTime: TPaymentTime): Extended;
    var
      Annuity, CompoundRN: Extended;
    begin
      if Rate <= -1.0 then ArgError('PresentValue');
      Annuity := Annuity2(Rate, NPeriods, PaymentTime, CompoundRN);
      if CompoundRN > 1.0E16 then
        PresentValue := -(Payment / Rate * Integer(PaymentTime) * Payment)
      else
        PresentValue := (-Payment * Annuity - FutureValue) / CompoundRN
    end;
    
    function GetRoundMode: TFPURoundingMode;
    begin
      Result := TFPURoundingMode((Get8087CW shr 10) and 3);
    end;
    
    function SetRoundMode(const RoundMode: TFPURoundingMode): TFPURoundingMode;
    var
      CtlWord: Word;
    begin
      CtlWord := Get8087CW;
      Set8087CW((CtlWord and $F3FF) or (Ord(RoundMode) shl 10));
      Result := TFPURoundingMode((CtlWord shr 10) and 3);
    end;
    
    function GetPrecisionMode: TFPUPrecisionMode;
    begin
      Result := TFPUPrecisionMode((Get8087CW shr 8) and 3);
    end;
    
    function SetPrecisionMode(const Precision: TFPUPrecisionMode): TFPUPrecisionMode;
    var
      CtlWord: Word;
    begin
      CtlWord := Get8087CW;
      Set8087CW((CtlWord and $FCFF) or (Ord(Precision) shl 8));
      Result := TFPUPrecisionMode((CtlWord shr 8) and 3);
    end;
    
    function GetExceptionMask: TFPUExceptionMask;
    begin
      Byte(Result) := Get8087CW and $3F;
    end;
    
    function SetExceptionMask(const Mask: TFPUExceptionMask): TFPUExceptionMask;
    var
      CtlWord: Word;
    begin
      CtlWord := Get8087CW;
      Set8087CW( (CtlWord and $FFC0) or Byte(Mask) );
      Byte(Result) := CtlWord and $3F;
    end;
    
    procedure ClearExceptions(RaisePending: Boolean);
    asm
      cmp al, 0
      jz @@clear
      fwait
    @@clear:
      fnclex
    end;
    
    end.

  5. کاربر مقابل از admin عزیز به خاطر این پست مفید تشکر کرده است:

    admin (21 / July / 2014),mohpersia (04 / August / 2014)

  6. #5
    کاربر سایت mohpersia آواتار ها
    تاریخ عضویت
    July 2014
    نوشته ها
    5
    تشکر ها
    1
    تشکر شده 0 بار در 0 ارسال.

    پاسخ : سوال.توابع و فرمول های محاسباتی و اماری

    خیلی ممنونم.اگر امکانش بود تمامی توابع ریاضیاتی مانند واریانس را برامون بذارید.

  7. #6
    مدیرکل سایت admin آواتار ها
    تاریخ عضویت
    September 2008
    محل سکونت
    تهران ، آیسک
    سن
    39
    نوشته ها
    522
    تشکر ها
    247
    تشکر شده 250 بار در 160 ارسال.
    Blog Entries
    1

    پاسخ : سوال.توابع و فرمول های محاسباتی و اماری

    نقل قول نوشته اصلی توسط mohpersia نمایش پست ها
    خیلی ممنونم.اگر امکانش بود تمامی توابع ریاضیاتی مانند واریانس را برامون بذارید.
    دقیقا همین کار رو کردم ، تو یونیت Math تمامی توابع ریاضی ذکر شده ...
    دلفی ،*جذاب ترین زبان طراحی نرم افزار ...

موضوعات مشابه

  1. اموزش مقدماتی برای کار با کامپننت EasyCrypt
    توسط yanin در انجمن Embarcadero RAD Studio
    پاسخ: 2
    آخرين نوشته: 25 / October / 2014, 12:48 PM
  2. توابع کار با موس
    توسط adanayi در انجمن دلفی 7
    پاسخ: 4
    آخرين نوشته: 21 / July / 2013, 04:13 PM
  3. pdf فارسی تنظیمات سوییچ سیسکو/آموزش مقدماتی
    توسط admin در انجمن موضوعات متفرقه
    پاسخ: 0
    آخرين نوشته: 16 / June / 2013, 04:25 AM
  4. پاسخ: 1
    آخرين نوشته: 15 / June / 2013, 09:59 PM
  5. جستجو در بانک اطلاعاتی
    توسط max در انجمن SQLServer 2008
    پاسخ: 9
    آخرين نوشته: 24 / November / 2012, 03:35 PM

علاقه مندي ها (Bookmarks)

علاقه مندي ها (Bookmarks)

مجوز های ارسال و ویرایش

  • شما نمیتوانید موضوع جدیدی ارسال کنید
  • شما امکان ارسال پاسخ را ندارید
  • شما نمیتوانید فایل پیوست کنید.
  • شما نمیتوانید پست های خود را ویرایش کنید
  •